(1) A set of continuous (smooth) functions S, is (allen uniformly complete, if $\underset{\text { fiver any } f \in c(M)}{H \varepsilon>0, \exists}\left\{f_{j}\right\}_{j=1}^{N} \subset S$
$\&\left\{a_{j}\right\} \subset \mathbb{C}$ such that

$$
\left\|f-\sum c_{j} f_{j}\right\|_{\infty} \leqslant \varepsilon .
$$

Namely any continuous function can be uniformly approximated by the span if functions in S.

Recall, if G is compact, ϕ, ψ are two irreducible representations
$\phi: G \rightarrow G L(r, V), \psi: G \rightarrow G L\left(r^{\prime}, V^{\prime}\right)$

$$
\left(\phi_{i k}(g)\right) \&\left(\psi_{j k}(g)\right)_{1 \leqslant j, \ell \leqslant r}
$$

Then $\langle\phi, \psi\rangle \doteq \int_{G} \phi_{i k} \overline{\psi_{j l}} d u=\left\{\begin{array}{cc}0 & \text { if } \\ \frac{\psi+\psi}{\delta_{i j}} \delta_{k l} & \phi \sim \psi .\end{array}\right.$

$\operatorname{din} \phi \doteq \operatorname{din}(v)$. Pineducible
$\left[\begin{array}{c}\text { Defn: } \\ \text { The representation ring is the ring of functions generated } \\ \text { by } S \text {. }\end{array}\right]$
Theorenl(peter- well $) S$ is uniformly complete.
In particular, any continuous function f, can by elements in the

L representation ring. ('Yin g'is Not needed!)
I shall discuss a proof using PDE (eigenfunction of the Laplace operator $\Delta\left(=-\frac{1}{\sqrt{g}} \frac{\partial}{2 x} \cdot\left(g^{\prime j} \sqrt{g} \frac{\partial}{2 x j}\right)\right.$ locally.). This is from Ex 16,20 of F. Warner's book. Ch $6 \int_{0}^{d_{0}^{2}}=g_{j} d x^{i} d e^{j}$ is the Riemennin metric $g=\operatorname{det}\left(g_{j} ;\right)$
(b) Uniform completeness of eigen functions
(c) eigenfunctions are inside the representation ring.

In fact can be expressed as linear combinations of elements in S. eigenvalues of
For (c), it requires some background on \& eigenfunction of Ex 16, pat (g) of F. Warner elliptic operators
E.g. $G=\mathbb{S}^{\prime}$, the completeness of $\left\{e^{\text {ind }}\right\}$, \& Bessel \downarrow

Sketch: Let G be the solution operator. $\Delta u=f, u \in(k, \Delta)^{\perp}, \lambda_{n} \rightarrow \infty$ as $\forall \alpha \in L^{2}(M)$ Span $\left\{u_{i}\right\}_{i=1}^{k}=$ kn \triangle. (For function $\quad\left\{\frac{1}{\sqrt{v o l(H)}\}}\right\} \in \mathbb{C}$ it in just $)$

$$
\alpha-\sum_{i=1}^{k}\left\langle\alpha, u_{i}\right\rangle u_{i} \quad \perp k_{w} \Delta
$$

$$
\Rightarrow \exists \beta \in \operatorname{kew}(s)^{1}, \quad G \beta=\alpha-\sum_{i=1}^{h}\left\langle\alpha . u_{i}\right\rangle u_{i}
$$

$$
\Delta \alpha=\Delta G \alpha=\alpha, \forall \alpha \in[\operatorname{ker}(\Delta)]^{-1}
$$

$$
\begin{aligned}
& \text { For } \underbrace{G\left(\sum_{i=h+1}^{n}\langle\beta\right.} u_{i}\rangle u_{i})=\sum_{i=k+1}^{n}\left\langle\beta \frac{u_{i}}{\left.\lambda_{i}\right\rangle} u_{i}\right. \\
& =\sum\left\langle\beta . \underline{G}\left(u_{i}\right)\right\rangle u_{i}=\sum_{i=k+1}^{n}\left\langle\underline{G}, u_{i}\right\rangle u_{i} \\
& =\sum_{i=k+1}^{n}\left\langle\alpha-\sum_{j=1}^{k}\left\langle\alpha, u_{j}\right\rangle u_{j}, u_{i}\right\rangle u_{i} \\
& =\sum_{i=k+1}^{n}\left\langle\alpha u_{i}\right\rangle u_{i} \quad \sin u \quad\left\langle u_{j}, u_{i}\right\rangle=0 \\
& \text { L<jsk } \\
& \left(\begin{array}{cc}
k+1 & \leq i \\
h_{a} & \lambda i \neq 0
\end{array}\right) \\
& \Rightarrow\left\|\alpha-\sum_{i=1}^{n}\left\langle\alpha, u_{i}\right\rangle u_{i}\right\|^{2}=\left\|G\left(\beta-\sum_{i=k+1}^{n}\left\langle\beta, u_{i}\right\rangle u_{i}\right)\right\|^{2} \\
& \leqslant \frac{1}{\lambda_{+1}^{2}}\left\|\beta-\sum_{i=k+1}^{n}\left\langle\beta, u_{i}\right\rangle u_{i}\right\|^{i=k+1} \\
& \leqslant \frac{1}{\lambda_{n}^{2+1}}\|\beta\|^{2} \longrightarrow 0 \\
& \left\{\begin{array}{c}
\lambda_{n} \rightarrow \infty \\
\text { as } n \rightarrow \infty
\end{array}\right.
\end{aligned}
$$

Given $\|\beta\|^{2}$ is fixed \& $\lambda_{n+1} \longrightarrow+\infty$ as $n \rightarrow \infty$
(b). Uses Sobolev embedding theorem:

Namely for $h \gg 1$.
(*) $\|\alpha\|_{\infty} \leqslant c\left\|(1+\Delta)^{k} \alpha\right\|$ for some $C=C(M, k)$.
Let $P_{n} \alpha=\sum_{i=1}^{n}\left\langle\alpha, u_{i}\right\rangle u_{i} \quad\left\{u_{i}\right\}$ eigenfunction of \triangle with λ_{i} - eigenvalue.

$$
\begin{aligned}
\Delta P_{i} \alpha & =\sum_{i=1}^{n}\left\langle\alpha, u_{i}\right\rangle \lambda_{i} u_{i} \\
& =\sum\left\langle\alpha, \Delta u_{i}\right\rangle u_{i}=\sum\left\langle\Delta \alpha, u_{i}\right\rangle u_{i} \\
& =\ln \Delta \alpha .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \underbrace{\left\|\alpha-p_{0} \alpha\right\|_{\infty}} \leqslant c \| \underbrace{(1+\Delta)^{k}\left(\alpha-p_{n} \alpha\right) \|} \\
& =c\left\|(1+\Delta)^{k} \alpha-\operatorname{Pn}_{n}(1+\Delta)^{k} \alpha\right\| \quad \underline{\rho}:=(1+\Delta)^{k} \alpha \\
& =\underbrace{c\left\|\varphi-P_{-y}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \text {, by }(a) \text {. } . ~ . ~ . ~}
\end{aligned}
$$

(c). Let $L_{\sigma}: G \rightarrow G$ be the left multiplication

It is easy to endow G with a left invariant metric
$\Rightarrow \quad L_{\sigma}=\left(G, d b^{2}\right)$ is an isometry.
Δ operator is a differential operator respects the isometries.

precisely $[\Delta(\operatorname{L\sigma f}(x))]=(\Delta f)(\sigma x)$

$$
\left[\text { e.g. on } \mathbb{R}^{n} \quad(\Delta(f(x+a)))=(\Delta f)(x+a) \text {. }\right]
$$

Then Let $\left\{\varphi_{i}\right\}$ be a unitary basis of $\underbrace{V_{x}-\text { the space of }}$ eigenfunction with eigenvalue λ

$$
\begin{aligned}
& \Rightarrow \quad L_{\sigma} \varphi_{i} \in V \lambda \quad \Rightarrow \\
& \underbrace{\left.L_{\sigma} \varphi_{i}=\sum_{j=1}^{L_{\sigma} \varphi_{i}} \varphi_{j}\right\rangle=\int_{G}^{N}\left(G_{j i}(\sigma)\right.}\left(L_{\sigma} \varphi_{i}\right) \overline{\rho_{j}} d_{\mu} \\
& N=\operatorname{din}\left(V_{\lambda}\right) . \\
& \begin{aligned}
G_{j i}(\sigma)=\underbrace{\langle\underbrace{}_{\sigma} \varphi_{i} \varphi_{j}\rangle} & =\int_{G^{\prime \prime}}\left(L_{\sigma} \varphi_{i}\right) \overline{\rho_{j}} d \\
& =\int_{\epsilon} \varphi_{i} \cdot(\sigma g) \overline{\varphi_{j}(J)} d \mu
\end{aligned}
\end{aligned}
$$

Clearly it is continuous in σ from the above.

Moreover

$$
\begin{aligned}
& \text { Lorever } \quad \sigma_{1} \sigma_{2} \varphi_{i}=\sum \varphi_{k} G_{k i}\left(\sigma_{1} \sigma_{2}\right) \\
& L_{\sigma_{i}} \circ L_{\sigma_{2}} \varphi_{i}=L_{\sigma_{1}}\left[\sum \varphi_{j} G_{j i}\left(\sigma_{2}\right)\right]=\sum \varphi_{k} G_{k j}\left(\sigma_{1}\right) \cdot G_{j i}\left(\sigma_{2}\right) \\
& \Rightarrow \quad\left(G_{k i}\left(\sigma_{1} \sigma_{2}\right)\right)=\left(G_{k j}\left(\sigma_{1}\right)\right) \cdot\left(G_{j i}\left(\sigma_{2}\right)\right) .
\end{aligned}
$$

Namely $\left.\sigma \rightarrow\left(G_{j i}, \sigma\right)\right) \in G L\left(N, V_{\lambda}\right)$ is a group homomorphism. Namely s a G representation

$$
\Rightarrow \quad G_{j i}(\sigma) \quad \in \operatorname{span}\{S\}
$$

On the other hand

$$
\begin{aligned}
& \qquad \underbrace{\left(L_{\sigma} \varphi_{i}\right)(e)=\sum G_{j i}(\sigma) \varphi_{j}(e)}_{\text {II }} \\
& \Rightarrow \varphi_{j i}^{\prime \prime} \\
& \Rightarrow \varphi_{i}(\sigma)=\sum a_{j} G_{j i}(\sigma) \\
& \Rightarrow \varphi_{i}(\sigma) \in \operatorname{Span}\{S\}
\end{aligned}
$$

This completes (c). Hence we complete the proof of PW,
(3) Remark:
(a): $\rho: G \rightarrow G L(r, V)$ is a group representation $d y: \eta \rightarrow$ gl (r, Y) is a lie algebra representation.

$$
\begin{aligned}
& d \varphi([X Y])=\left[d_{\varphi}(X), d \varphi(Y)\right]=d \varphi(X) \cdot d \rho(Y)-d g(Y) \cdot \operatorname{ady}(X) . \\
& \text { Lie algebra element }
\end{aligned}
$$

If G_{1} is simply -connected. jive. $\pi_{i} g_{1} \rightarrow g_{2} \exists \operatorname{ga}_{d \varphi=\pi} \varphi$. (existence).
Hence in the car G is sinply-connected, the Lie group representation \& Lie algebra representation are equivalent.
(b)

$$
\begin{aligned}
& \phi_{i}: G \rightarrow G L\left(r_{i} V_{i}\right) \\
& \phi_{1} \oplus \phi_{2}: G \rightarrow G L\left(V_{1} \oplus V_{2}\right), \quad g \rightarrow \phi_{1} \oplus \phi_{2}:\left(v_{1}, v_{2}\right) \rightarrow\left(\phi_{1}(s)\left(r_{1}\right), \phi_{2}(j)\left(v_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(d \phi_{1}(x)\left(r_{1}\right), d \phi(x)\left(v_{2}\right)\right) \\
& \text { aV. } \quad \in V_{2} \\
& \phi_{1} \otimes \phi_{2}: \quad G \rightarrow G L\left(V_{1} \otimes V_{2}\right) \\
& g \rightarrow \quad\left(\phi_{1} \otimes \phi_{2}\right)(g)\left(v_{1} \otimes v_{2}\right) \\
& =\phi_{1}\left(v_{1}\right) \otimes \phi_{2}\left(v_{2}\right) \\
& d\left(\phi_{1} \otimes \phi_{2}\right)(x)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{1} \otimes \psi_{2}\right)(\exp (t x))\left(v_{1} \otimes u_{2}\right) \\
& =d \phi_{1}(x)\left(v_{1}\right) \otimes v_{2}+v_{1} \otimes d f_{2}(x)\left(v_{2}\right) \\
& =\pi_{1}(x)\left(v_{1}\right) \otimes v_{2}+v_{1} \otimes \pi_{2}\left(v_{2}\right)
\end{aligned}
$$

Abbrevictell as
The action of $x \in g$ on $v_{1} \otimes v_{2}$ is $\underbrace{X v_{1} \otimes v_{2}+v_{1} \otimes x v_{2}}$ ($\quad\left\{\begin{array}{c}x \in g \text { is viewed } \\ u s \quad \pi_{1}(x) \in g e\left(v_{1}\right) \\ \pi_{2}(x) \in g e\left(v_{2}\right) \\ \pi_{i} g \rightarrow g e\left(v_{i}\right)\end{array}\right.$ are two representations
(c)

Since $\phi^{*}: G \rightarrow G I_{-}\left(v^{*}\right)$, jive.. $\phi_{:} G \rightarrow G L(V)$
is defined us $\quad \psi^{*}(\xi)\left(v^{*}\right)(w) \doteqdot v^{*}\left(g^{-1} w\right)$

$$
\begin{gathered}
d \phi^{*}(x)\left(v^{*}\right)(u)=\left.\frac{d}{d t}\right|_{t=0} \phi^{*}(\exp (t x))\left(v^{*}\right)(\omega)=v^{*}\left(\phi\left(\left.\frac{d}{d t}\right|_{t=0} \exp (-t x)\right)(\omega)\right) \\
=v^{*}(d \phi(-x)(\omega))=-v^{*}(d \phi(x)(\omega))
\end{gathered}
$$

Namely if $\pi: g \rightarrow \underline{g l(V)}$ is th Lie algesu. representation

$$
\frac{\pi^{*}: g \rightarrow g l\left(V^{*}\right) \text { is clefind }}{\pi^{*}(x)\left(v^{*}\right)(w) \div-v^{*}(\underbrace{\pi(x)(w)})} \text { as }
$$

Called

$$
v^{*} \in V^{*}
$$ Contragredient representation.

(d), Another Peter-Weyl tyke the oren:

Let S_{c} bethe character functions of all $\psi \in \widehat{G}$

$$
\Rightarrow \forall f \in c\left(\mathbb{F}_{1}\right) \quad f\left(g x\left(g^{-1}\right)=f(x) \text {. named } f\right. \text { in a }
$$

Class function.
then f can be approximate by S_{c}.
See Pontrygin Theorem 34.
(4) Lie algura. g

$$
\text { g. } \quad d_{x}(y) \doteq \underbrace{[x, y]}
$$

(Yegardless $y=$ yof G any $\begin{gathered}\text { an general/abstact } \\ \text { or } \\ \\ \end{gathered}$ German

$$
B(x, y):=\operatorname{tr}\left(\operatorname{ad}_{x} \text { aly }\right)-\text { called th } \underbrace{\text { killing forn }} \text {. }
$$

Compute it for $\underbrace{g l(n, \mathbb{R})} g l(n, \mathbb{C}) u \sin s$

$$
\begin{aligned}
& x=\underbrace{\left[e_{j}, e_{k l}\right]}_{x_{i j} e_{\cdot j}} e_{i j} \cdot e_{k l}-\underbrace{\delta_{j k} e_{i l}}_{e_{k l} \cdot e_{i j}}-\underbrace{\delta_{i} e_{k j}} \\
& \operatorname{tr}\left(\left|\overline{\operatorname{do}} \|_{x}\right| \operatorname{Ld}_{y}\right)=\sum\langle\operatorname{ad}_{x} \operatorname{ad} d_{y}\left(e_{u}\right), \underbrace{\left.e_{k l}^{*}\right\rangle} \\
& =\left\langle\operatorname{ad}_{x}\left(Y_{i j}\left(\delta_{j h} e_{i l}-\delta_{l i} e_{k j}\right)\right) \quad e_{k e}^{*}\right\rangle \\
& =\left\langle X_{s t} Y_{j j}, \delta_{j k} \text { ad } e_{i l}-X_{s t} Y_{i j}, \delta_{l i} \text { ad } e_{e_{s t} j}, e_{k k}^{*}\right\rangle \\
& =\begin{array}{l}
\delta_{t i} e_{s l}-\delta_{l s} e_{i t} \quad \delta_{t k} e_{i j}-\delta_{j s} e_{k t} \xrightarrow{n} X_{i k}-X_{l l} Y_{k k}-X_{k k} Y_{i i}+n X_{j l} Y_{l j}
\end{array} \\
& X_{s t} Y_{i j} \delta_{j k} \delta_{t i} \delta_{s k} \delta_{l l} \\
& x_{s t} Y_{i j} \delta_{l i} \delta_{j s} \delta_{h 1} \delta_{t l}^{\curvearrowleft} \\
& =2 n \operatorname{tr}\left(X Y^{t r}\right)-2 \operatorname{tr}(X) \operatorname{ta}(Y) \text {. }
\end{aligned}
$$

Basic panperties
(a) If $A \in$ Aut (y) i.e. $A([X, Y])=[A X, A Y]$

$$
\Rightarrow \quad B(A X, A Y)=B(X, Y)
$$

(b) If $a \in \underbrace{\operatorname{Der}(g)}$ i.e. $a([X, r])=[a X, Y]+[x, a r]\}$

$$
\Rightarrow \quad B(a X, Y)+B(X, a y)=0
$$

$A(t)\left[\begin{array}{ll}X & Y\end{array}\right]=\left[\begin{array}{ll}A(t) X\end{array}\right]$
$\begin{aligned} A(t)[X, Y] & =\left[A^{\prime}(t) X, A(t) r\right] \\ A^{\prime}(t)[x, Y] & =\left[A^{\prime}(x, A(t]\right.\end{aligned}$
Note

$$
\text { Aut }(g) \text { has Lie algebra }
$$

$A^{\prime}(t)[X, Y]=\left[A^{\prime}(t) X, A(t) Y\right]$
Sinu if $A(t) \in \operatorname{Ant}(g) \quad A(\theta)=i d . \quad A^{\prime}(0)=a+\left[A(t) X, A^{\prime}(t) Y\right]$

$$
\Rightarrow \quad a([x Y])=[a x y]+\left[\begin{array}{ll}
X, a Y
\end{array}\right]
$$

On the other hand

$$
\begin{aligned}
& {[a \bar{x}, \bar{y}]+[\bar{x}, \overline{, Y}] . f \text { a } \in \text { Derr }^{(g)}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e^{t a} \in \operatorname{Ant}(q) \text {. } \\
& \text { prouf of(a): } A[X, Y]=[A X, A Y] \\
& \operatorname{Aad}_{X}(Y)=\operatorname{ad}_{A x} \times A_{(}^{A}(Y) \\
& \Rightarrow A A_{x}=\operatorname{ad}_{A x} \circ A \Rightarrow A_{x}=a d_{A x} \\
& \Rightarrow \underbrace{B(A x, A F)}=\operatorname{trcc}\left(a a_{A x} a d d_{A r}\right)
\end{aligned}
$$

The (b) follows from (a) sine

$$
B(\underbrace{e^{t s} X, e^{t s} y})=B(X, Y) \Rightarrow \begin{aligned}
& B(s x y) \\
& +B(x, c t)=0
\end{aligned}
$$

